
Page !1

wAVR

Maverick Embedded Technology Ltd

Page !2

Introduction 4 ...
Features 4 ..

Supported Protocols 5 ..
wAVR 5 ..
AVR™ Dragon 5 ...
STK500v2/STK600 5 ..

What’s what? 6 ...
A Quick Tour of wAVR 6 ..
Programming Cable 9 ...
Setup 10 ..
WiFi Provisioning 10 ...
Connecting to wAVR over WiFi 12
Using wAVR with avrdude 13 ...
Connecting to the Target UART 14 ...
Configuring wAVR 15 ...
The Built-in Shell 15 ...
Command: display 16 ..
Command: help 16 ...
Command: isp 16 ...
Command: net 17 ...
Command: pdi 17 ...
Command: prog 17 ..
Command: reboot 18 ...
Command: serial 19 ...
Command: uart 19 ...
Command: updi 19 ..
Command: usb 20 ..

Page !3

Command: wifi 20 ...
Command: wincota 21 ...
Acknowledgements 22 ..
The Display Driver 22 ...
GPIO Hardware Abstraction 22 ...
ARM Cortex-M4 CMSIS Headers 23
Atmel Software Framework 24 ...
FreeRTOS 25..

Page !4

Introduction
Thank you for purchasing wAVR by Maverick Embedded Technology Ltd. The wAVR
Programmer is a small WiFi-enabled in-system programming device for the Microchip
(previously Atmel) AVR™ range of micro-controllers. It supports AVR™ MCUs from the
Tiny, Mega and XMega range using either ISP, PDI, or uPDI programming methods.

Features
Numerous significant features set it apart from other AVR™ programmers:

• Programs devices over your WiFi network using the open-source programmer
“avrdude" (version 6.3 recommended).

• Programs devices over USB using "avrdude" or Atmel Studio.

• Supports target voltages between 1.65 volts and 5.5 volts.

• Communicates with your target using RS232 on a UART or bit-banged I/O pin. wAVR
will make the UART data available over WiFi using the telnet command on your host.
Both RxD and TxD are supported at all the common baud rates.

• wAVR's OLED display keeps you informed of both its status and various target
parameters. It can also be configured to show the RS232 data received from the target.

• The USB interface provides two CDC-compatible RS232 interfaces. One of those can be
used for programming - supporting the same protocols as the WiFi interface. The other
provides access to the same target UART interface mentioned above.

• The USB interface can also be configured to emulate just enough of Atmel's STK600
programmer for Atmel Studio to be used to program your devices without the need to
add avrdude as an external command.

• wAVR can provide your target with a recovery clock signal should you need it to reset
the fuses on Tiny or Mega devices.

• All I/O signals between wAVR and your target are fully protected against electrostatic
discharge, over-voltage and reverse voltage.

• In most cases wAVR can be powered by your target. Only when your target voltage is
below around 3.1 volts will wAVR need a separate power connection. wAVR will show a
message on the OLED display if its power-supply voltage is too low for reliable
operation.

• Firmware updates for wAVR, should they be necessary, can be applied very easily over
WiFi using a simple update program. Note that wAVR does not “phone home” to detect
new firmware updates, or for any other reason. 

Page !5

2

Supported Protocols
wAVR
The ISP (for Tiny and Mega), PDI (XMega), and uPDI (latest Tiny MCUs) programming
methods are supported in this mode. The mode is fully supported by the latest
development version of avrdude over both WiFi and USB CDC serial port, after applying a
small set of patches. The patches have been submitted to the avrdude developers in the
hope that native wAVR support will be provided in a future release.

AVR™ Dragon
Both ISP (for Tiny and Mega) and PDI (XMega) programming are supported using this
protocol. This mode does not support uPDI. The protocol is fully supported by avrdude
over both WiFi and USB CDC serial port.

STK500v2/STK600
Both ISP and PDI programming are supported using this protocol. The protocol is fully
supported by avrdude over both WiFi and USB CD serial port. Atmel Studio can also work
with the STK500v2 emulation over USB however it requires installation of a USB CDC
“.inf” file in order for Windows™ to recognise wAVR as a valid USB device, and only ISP
programming is supported.

Alternatively you can switch wAVR’s USB controller into STK600 emulation mode. This
mode provides just enough emulation of a real STK600 to make driver installation
unnecessary and for both ISP and PDI programming to function correctly.

Page !6

3

What’s what?
A Quick Tour of wAVR

1. 10-pin Target header
Connects wAVR to the target device using the supplied cable. The pins are assigned as
follows:

Pin ISP Mode PDI Mode uPDI Mode

1 MISO PDI Data uPDI Data

2 Target Vcc Target Vcc Target Vcc

3 SCK Unused. 47KΩ pull-up to Target
Vcc

Unused. 47KΩ pull-up to Target
Vcc

4 MOSI Unused. 47KΩ pull-up to Target
Vcc

Unused. 47KΩ pull-up to Target
Vcc

Pin

Page !7

The layout of pins 1-6 corresponds to Atmel's 6-pin ISP header standard. The remaining
pins are specific to wAVR.

Note that wAVR can be powered by the target via pins 2 and 6. Your target must be able to
provide at least 3.3 volts at a constant 150mA. Peak current demand is around 460mA
with an average duty cycle of 15% when WiFi is active. The voltage on pin 2 should not
exceed 5.5 volts.

If your target is incapable of meeting wAVR's power requirements you will see a warning
on the display. In this situation you should provided 5v power via the USB connector.

2. USB Connector
Provides additional 5 volt power when the target Vcc is below about 3.2 volts or the target
is unable to meet the current demands of wAVR.

The USB port also instantiates two CDC USB serial ports on compatible operating systems
(basically anything except Windows). The first CDC serial port instance provides access to
wAVR's Dragon/STK500 compatible programming interface. The second instance
provides access to the target UART. Since these interfaces are primarily available over
WiFi it is not expected that they will be used often.

The USB port can also be switched into a mode which emulates the Atmel STK600
programmer. In this mode, the target UART port is unavailable over USB but it does allow
wAVR to be used as a programming device in Atmel Studio on Windows.

3. Provision Switch
Press and hold the provision switch for 5 seconds to place the wAVR into WiFi Provision
Mode. This allows you to change the WiFi network wAVR connects to. See section 3.2 for
details.

4. OLED Display

5 Reset PDI Clock Unused. 47KΩ pull-up to Target
Vcc

6 Gnd Gnd Gnd

7 Debug UART TxD Debug UART TxD Debug UART TxD

8 Rescue Clock. 47KΩ pull-up to
Target Vcc if not used.

Unused. 47KΩ pull-up to Target
Vcc

Unused. 47KΩ pull-up to Target
Vcc

9 Debug UART RxD Debug UART RxD Debug UART RxD

10 Gnd Gnd Gnd

ISP Mode PDI Mode uPDI ModePin

Page !8

The display is used to show status of wAVR and the connected target. The top line always
shows WiFi signal strength, USB and Network activity indicators, and the device's IPv4
address.

The second line shows the current target Vcc and wAVR's current Vcc. If wAVR's Vcc
drops below 2.7 volts the second status line will show "LOW" next to wAVR Vcc. This is
your cue to connect wAVR to external power via the USB connector.

When programming a target, the second status line will also show the current interface
clock rate used while programming.

The remaining four lines are used to show Rx data from the target UART connection.

5. Status LEDs

6. WiFi Antenna
Ensure this is not obstructed for best WiFi performance.

7. Erase and SWD pads
These are used during manufacturing and serve no end-user purpose. You should be
especially careful not to connect the Erase pad to Vcc during power-up. This will
completely erase the CPU's firmware and boot loader. Your device will need to be returned
to Maverick Embedded Technology, at your expense, for re-imaging.

8. Serial Console
These pads serve no end-user purpose but an adventurous user might be tempted to
connect the pins to see what they do. The pins provide access to the ARM CPU’s debug
serial console. There is a shell running on the console, providing exactly the same features
as the shell available over the network (documented below) so there’s really no point
connecting to it. However, the pin-out is as follows:

Colour Name Purpose

Green WiFi Indicates WiFi connection state. When connected to an Access Point the LED is
on. When in Provision mode the LED blinks. Otherwise the LED is off to indicate
no WiFi connection established.

Amber Net Blinks to indicate network activity over WiFi.

Pin Function Comment

1 RxD Rx data to the ARM CPU. Connect to pin 4 briefly at power-on to
force entry to the boot-loader.

2 TxD Tx data from the ARM CPU. Baud rate is 38400, no parity, one stop
bit.

3 Not Connected

4 Gnd Connect to pin 1 briefly at power-on to force entry to the boot-loader.

Page !9

Note: TxD and RxD must not be driven at a higher voltage than the ARM CPU’s Vcc. This
is nominally 3.3 volts but may be less if wAVR is drawing power from the Target Vcc pin.
You should be especially careful not to back-feed power via TxD/RxD when wAVR is
powered off. Damage may ensue! In short, use of the debug serial console is not
recommended.

Programming Cable

1. 10-pin plug
This connects to wAVR's 10-pin socket. Pin-out is as described earlier for wAVR's 10-pin
header.

2. 6-pin plug
This connects to the standard Atmel 6-pin ISP/PDI/uPDI header of you target device. Pin-
out is as described earlier for wAVR’s 10-pin header, though only the first 6 pins apply.

3. 4-pin plug
This carries the target UART, rescue clock and Gnd signals. The pin-out is essentially the
same as pins 7-10 of wAVR's 10-pin header: 

Page !10

4

Setup
WiFi Provisioning
Before it can be used over WiFi, you must configure wAVR to join your wireless network.
The recommended way to do this is to power the device via USB.

When powered up for the first time, wAVR will start in “Provisioning" mode. In this mode,
wAVR will act as a WiFi Access Point with the SSID "Maverick Embedded wAVR" and no
password.

From your PC or smart phone, connect to "Maverick Embedded wAVR”. Depending on
your PC's operating system you will either be presented with a captive network sign-on
screen, or you will have to open up a web browser and navigate to http://192.168.0.1/

Use the sign-on screen to enter the details of your own WiFi network, as shown below.

Enter the Network Name (SSID) of your WiFi network and its associated pass phrase/key.
Note that wAVR supports WPA/WPA2 security only. WEP is not supported.

Page !11

The Device Name field is optional. It is passed to your network's DHCP server as part of IP
address negotiation and could be used to identify the wAVR device in the DHCP server log
files if they are available.

After clicking "Connect", the wAVR device will switch off Access Point mode and attempt
to connect to the configured WiFi network. 

Page !12

5

Connecting to wAVR over
WiFi
The OLED display will show the connection status in the top-right of the screen. If all goes
well it will show an IPv4 address. This is the address by which wAVR can be reached from
your host PC.

You can verify the connection status using your host's “telnet" command. For example, if
wAVR's IPv4 address is 192.168.1.50 then from a terminal window on your PC you can
type telnet 192.168.1.50.

If all is well you will see the following:

Trying 192.168.1.50...
Connected to 192.168.1.50.
Escape character is '^]'.

wAVR WiFi/USB Programmer for Microchip AVR MCUs
Copyright (c) 2018 Maverick Embedded Technology Ltd.

Firmware Version: 1.1.0
Firmware Build Date: Feb 15 2018, 17:28:37

NetShell>

This is wAVR's simple command-line "shell" from which you can monitor and configure
various aspects of wAVR's behaviour. To exit the shell type CTRL-] followed by quit. The
commands available from the shell are described in more detail later in this document.

Page !13

Using wAVR with avrdude
wAVR was designed from the outset to work with the open-source AVR programmer
called "avrdude". If you already use avrdude-6.3 with a different programmer then a
simple command-line change is all that is needed to get up and running with wAVR. The
minimum recommended version of avrdude is 6.3. Earlier versions are not guaranteed to
function correctly with wAVR.

Two command line options are relevant; "-P" and “-c".

1. -P <port>

This normally specifies the host serial port which is used to communicate with the
controller. However the option has a handy feature which allows you to specify a network
address rather than a physical serial port:

-P net:192.168.1.50:3000

The above -P option tells avrdude to establish a TCP connection to IPv4 address
192.168.1.50, port 3000. Port 3000 is where wAVR listens for avrdude connections.

2. -c <programmer-id>

This is the standard "programmer type" option for avrdude. To work with wAVR, simply
set <programmer-id> to "dragon_isp" or "dragon_pdi". Use the latter for XMega
devices and the former for Tiny and Mega devices.

An example command line to program an ATMega168p would be:

$ avrdude -p atmega168p -P net:192.168.1.50:3000 -c dragon_isp -U flash:w:main.hex

For an XMega device:

$ avrdude -p atxmega128a3u -P net:192.168.1.50:3000 -c dragon_pdi -U flash:w:main.hex

That's all there is to it.

If you’re using the latest avrdude with our uPDI patches then you will need to substitute
“wavr_isp" in place of "dragon_isp" and “wavr_pdi" in place of “dragon_pdi”. In
addition, uPDI mode is accessed by specifying “wavr_updi”. You will also need to switch
wAVR into native mode using the following command at wAVR’s shell prompt:

NetShell> prog mode wavr

See the command reference section, below, for more information.

Page !14

Connecting to the Target UART
A very useful feature of wAVR is the ability to send and receive RS232 serial data to and
from your target device over the network using your host's "telnet" command.

Simply connect the TxD/RxD/Gnd pins to the RxD/TxD/Gnd pins of your target. Note
that wAVR's UART operates at logic voltage levels rather than true RS232 levels as you'd
find on a real RS232 serial port. Connecting wAVR to a real RS232 serial port risks
damaging some components on wAVR if the real serial port is able to drive a large current
through wAVR’s over-voltage protection devices.

By default wAVR uses a serial port speed of 38400 baud, 8 data bits, no parity and one
stop bit. The speed and parity settings can be changed via wAVR's command line shell
however the number of data and stop bits are fixed due to limitations of the CPU's UART
hardware. This should not be a problem as most applications will use the standard
configuration.

To connect to the UART from the host:

$ telnet 192.168.1.50 2000
Trying 192.168.1.50...
Connected to 192.168.1.50.
Escape character is '^]'.

Assuming the target's baud rate and wAVR's baud rate match you should now see
whatever serial data is sent by the target. The received data will also be shown on the
OLED display (this can be disabled by a shell command).

To exit the telnet session, type CTRL-] followed by quit.

Page !15

6

Configuring wAVR
The Built-in Shell
wAVR has a simple command-line interface available over WiFi on TCP port 23 - the
standard "telnet" port.

$ telnet 192.168.1.50

Trying 192.168.1.50...
Connected to 192.168.1.50.
Escape character is '^]'.

NetShell>

The available commands are:

display Manipulate the onboard display

help Display this help

isp Configure ISP programmer

net Display network status

pdi Configure PDI programming

prog Some generic programmer settings

reboot Reboot wAVR

serial Show wAVR’s serial number

uart Display/modify target UART configuration

updi Configure uPDI programming

usb Configure USB mode

wifi Display/configure WiFi Info

wincota Update WiFi module firmware Over-The-Air

Assuming you have provisioned the WiFi connection as described earlier then the default
settings for most of the above commands will be fine. The most common changes you are
likely to make will be display orientation and UART baud rate. 

Page !16

Command: display
display

Show current display configuration.

display say [text] ...

Prints some text onto the display.

display flip

Flips the display orientation.

display uart <"on" | "off">

Enable/Disable showing Rx data from the target serial port on the attached
display. Default is On.

display rssi <"on" | "off">

Controls whether the WiFi signal strength is shown as a simple bar graph
or as the RSSI value provided by the WiFi controller.

Command: help
help

Show list of available commands.

Command: isp
isp

Displays current ISP programming clock rate

isp clock <rate>

Sets the ISP programming clock to <rate>. This is the bit clock used when
programming ISP devices and a non-zero value overrides any bit clock
supplied by the programmer (avrdude). The default is 0, which means use
a safe default value or whatever value is specified by the programmer. Non-
zero values must lie between 1000 and 1800000 inclusive. Take note of the
maximum safe value specified in the target device's data sheet in case you
exceed the limit it is capable of supporting. Typically this is CPU clock / 4
for most ISP-capable targets.

Page !17

Command: net
net

Shows current network configuration and socket states.

Note that wAVR does not support static IP configuration due to limitations
in Atmel Software Framework's WiFi driver. Therefore TCP/IP
configuration is performed via DHCP only.

Command: pdi
pdi

Display's current PDI clock frequency.

pdi clock <frequency>

Sets the PDI clock rate to <frequency>. This is the communication rate
used when programming XMega devices if it is not specified by the
programmer. The default is 1000000 (1 MHz). The minimum supported
clock is 100000 (100 KHz) and the maximum is 10000000 (10 MHz). You
may need to experiment to determine the maximum rate at which your
target device can be reliably programmed. For reference, it's worth noting
that Atmel-ICE's max PDI clock rate is 7.5 MHz...

Command: prog
prog

Display's current status.

prog rclk <rescue-clock-frequency>

Set the rescue clock (pin 8 of wAVR's 10-pin target header) to the specified
frequency. Supported rates are 1-2000000 (1 Hz to 2 MHz), where 0
(zero) disables the rescue clock. Note that the actual rate will be as close as
possible to the requested frequency but due to timer constraints it will
usually not be exact. The clock is available when programming ISP targets
only.

prog mode [<wavr> <dragon> | <stk500>]

Page !18

Set protocol supported over the network.

"wavr" is supported in the development version of avrdude plus our
patches, and permit ISP, PDI and uPDI targets to be programmed by your
wAVR device.

"dragon" is suitable for programming ISP and PDI targets via avrdude.
wAVR will identify itself as an AVR Dragon in this case.

"stk500" is provided for Atmel Studio compatibility, although its use is
discouraged as sadly Atmel Studio does not support programming in either
STK500 mode or Dragon mode. In fact it doesn't know that either of these
devices can be reached over the network, so wAVR is best used as an
external programmer. If you really want to use wAVR on Atmel Studio as a
native programmer then you need to set the device ID to "STK600" using
the “prog stkid" command and connect via USB with wAVR's USB mode set
to "stk600". This is not a supported configuration and we may remove USB
emulation of STK600 in a future firmware update.

prog stkid <stk500-id-string>

Set the ID string reported to the host when the stk500 mode is selected.
Default is "STK500_2. The appropriate ID will be chosen automatically for
the other two modes.

Command: reboot
reboot

Immediately reboots wAVR.

reboot defaults yesplease

Reboots wAVR after erasing all stored settings. When the firmware
restarts, all settings will be restored to factory default values.

reboot bl

Reboots into the boot loader. This is used when applying firmware updates
over WiFi. Details will be provided with the update image. The only way to
exit the boot loader, other than uploading a valid firmware image, is to
power-cycle wAVR.

Page !19

Command: serial
serial

This will display the device's unique serial number. You will be asked to
quote this number when purchasing firmware upgrades from Maverick
Embedded Technology since paid-for upgrades are locked to a specific
device.

Note: this applies only to upgrades, not updates. The latter are used to fix
bugs and/or add simple new features. The former will be used for
significant new value-added features.

Command: uart
uart

Display configuration and statistics for the Target UART.

uart speed <baudrate>

Set speed to the specified baud rate. Supported rates are: 150, 300, 600,
1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.

uart fmt <character-format>

Set character format. Specified as char SizeParityStopbits, where: size is
always 8, parity is N, O, or E and stopbits is always 1.

For example "8N1" is character size 8, no parity, 1 stop.

Command: updi
updi

Displays current uPDI baud rate.

updi baud <rate>

Sets the uPDI baud rate to <rate>. This is the communication rate used
when programming uPDI devices if it is not specified by the programmer.
The default is zero, which means use a safe minimum of 225Kbaud. For
other baud rates, wAVR will set the target's UPDICLKSEL field
automatically to a value appropriate for the specified rate. Note that this

Page !20

might fail to work if Brown Out Detect is set to anything other that its
highest level. See the target's data sheet for details. The lowest acceptable
value for the uPDI baud rate is 1200. The highest is 900000.

Command: usb
usb

Display current USB mode.

usb mode [CDC | STK600]

Change USB mode to either CDC (USB Serial Port) or STK600 emulation
(for Atmel Studio's benefit). Note that a mode change will take effect after a
reboot.

Command: wifi
wifi

Display current WiFi settings.

wifi ssid <wifi-network-name>

Sets the name of the WiFi network to which wAVR should connect.

Note: at the moment wAVR does not support network names containing
spaces. This will be addressed in a future firmware update. You can work
around this by setting wAVR into WiFi provision mode and entering the
details through the captive portal or web page.

wifi key <encryption-type> <wifi-network-passphrase>

Configure the encryption type and passphrase. Encryption type is one of
"wep" or "wpa". Note that WEP is insecure and support is likely to be
dropped in future firmware updates.

The wifi-network-passphrase is the password used to secure your
WiFi network. Again, wAVR does not support white-space characters in the
passphrase and this, too, will be addressed in a future firmware update.

wifi name <dhcp-client-name>

Specifies a human-friendly name for wAVR. Most good DHCP servers will
log the client name against the assigned IP address and may populate the
local DNS with the name for ease of access. This is blank by default.

Page !21

Command: wincota
wincota

Initiates an Over The Air update of firmware in the WINC1500 WiFi
controller. The specified URL must be in the form:

 http://server-name/firmware-file

where "server-name" will usually be winc-fw.maverick-embedded.co.uk
and "firmware-file" specifies the location and name of the file on the server.
The purpose of this command is to enable in-the-field patching of the WiFi
controller in cases where serious WiFi security- related updates are needed,
such as the 2017 WPA2 "Krack" incident. (Don't worry - the patch for that
one has already been applied!) WARNING: You are very strongly cautioned
against uploading a firmware image which has not been tested by Maverick
Embedded Technology Ltd. Doing so could render your device completely
unusable if the wAVR driver in your device is incompatible with the new
firmware. Recovering from this situation could entail desoldering and
replacing the WiFi module!

http://winc-fw.maverick-embedded.co.uk

Page !22

7

Acknowledgements
wAVR firmware contains open-source software from several third parties. Their license
details are included below.

The Display Driver
Universal 8bit Graphics Library (http://code.google.com/p/u8glib/)

Copyright (c) 2011, olikraus@gmail.com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GPIO Hardware Abstraction
Specifically hal_gpio.h by Alex Taradov (https://github.com/ataradov/mcu-starter-
projects)

https://github.com/ataradov/mcu-starter-projects
https://github.com/ataradov/mcu-starter-projects

Page !23

Copyright (c) 2014-2016, Alex Taradov <alex@taradov.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
POSSIBILITY OF SUCH DAMAGE.

ARM Cortex-M4 CMSIS Headers
Copyright (c) 2009 - 2014 ARM LIMITED

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Page !24

• Neither the name of ARM nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Atmel Software Framework
Small portions of Atmel Software Framework are included in the firmware.

Copyright (c) 2012-2016 Atmel Corporation. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived
from this software without specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel
microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY

Page !25

DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

FreeRTOS
wAVR Firmware uses a wholly unmodified version of FreeRTOS-10.0.0 which is licensed
under the terms of the MIT Open Source License, below:

Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software. If you wish to use our Amazon
FreeRTOS name, please do so in a fair use way that does not cause confusion.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

	Introduction
	Features
	Supported Protocols
	wAVR
	AVR™ Dragon
	STK500v2/STK600
	What’s what?
	A Quick Tour of wAVR
	Programming Cable
	Setup
	WiFi Provisioning
	Connecting to wAVR over WiFi
	Using wAVR with avrdude
	Connecting to the Target UART
	Configuring wAVR
	The Built-in Shell
	Command: display
	Command: help
	Command: isp
	Command: net
	Command: pdi
	Command: prog
	Command: reboot
	Command: serial
	Command: uart
	Command: updi
	Command: usb
	Command: wifi
	Command: wincota
	Acknowledgements
	The Display Driver
	GPIO Hardware Abstraction
	ARM Cortex-M4 CMSIS Headers
	Atmel Software Framework
	FreeRTOS

