
Page 1

Maven Firmware
Maverick Embedded Technology Ltd 

Page 2

Introduction 4 ...
Features 4 ..

Supported ARM Micro-Controllers 5
GDB Server Support 7 ..
Connecting to Maven over USB 8
Using Maven with GDB 9 ..
Connecting to the Target UART 11 ..
Configuring Maven 12 ..
The Built-in Command Line 12 ..
Command: adapter 13 ...
Command: gdb_attach 13 ...
Command: help 14 ...
Command: reboot 14 ...
Command: rstcfg 14 ..
Command: rtos 15 ..
Command: serial 16 ...
Command: tc 16 ...
Command: uart 17 ...
Command: cortexm 17 ...
Command: gpnvm 18 ..
Command: info 18 ...
Command: protect 19 ..
Command: unlock 19 ...
RTOS Support 20 ...
Acknowledgements 23 ..
GPIO Hardware Abstraction 23 ...

Page 3

ARM Cortex-M4 CMSIS Headers 24
FreeRTOS 24..

Page 4

Introduction
Thank you for downloading Maven by Maverick Embedded Technology Ltd. The Maven
firmware implements a Programmer/Debugger device for ARM Cortex-M micro-
controllers.

Features
Numerous significant features set it apart from other ARM programmers/debuggers:

• Built-in GDB server accessible over USB means Maven works with any host system
which can run GDB for ARM.

• GDB server automatically supports thread-aware debugging for firmware images
containing either FreeRTOS or NuttX. Support for additional RTOSes will be added in
due course.

• Does not require middleware running on the host, such as OpenOCD, and the
associated configuration file(s).

• Supports Cortex-M SWO serial data in NRZ mode at up to 3MHz.

• Communicates with your target using RS232 on a UART or bit-banged I/O pin. Maven
will make the UART data available over USB on your host. Both RxD and TxD are
supported at all the common baud rates.

• The USB interface provides two CDC-compatible RS232 interfaces. One of those is
dedicated to the GDB server, while the other is dedicated to SWO, target UART, and/or
Semi-hosted console I/O. You can select SWO, target UART, or Semi-hosting either
upon connection to the CDC device, or by a configuration command issued via GDB.

• Versions of Maven exist for several debug probes:

✦ NXP’s MCU-Link

✦ Maverick Embedded Technology Ltd Maven2 probe.

Page 5

2

Supported ARM Micro-
Controllers
Maven’s current firmware supports ARM Cortex-M micro-controllers from Microchip Inc
(previously Atmel), and a selection of devices from ST Micro. This includes both the CPU
core itself, memory layout (address of RAM/ROM/Flash) and programming of the on-
chip Flash memory.

Cortex-M0/M0+
• Microchip SAMC20, SAMC21

• Microchip SAMD09, SAMD1x, SAMD2x

• Microchip SAMDA1

• Microchip SAML21, SAML22

• Microchip SAMR2x, SAMR3x

• STMicro STM32F0 series.

• Raspberry Pi Pico (RP2040).

Cortex-M3
• Microship SAM3A, SAM3N, SAM3S, SAM3U, SAM3X

• STMicro STM32F1 series.

Cortex-M4
• Microchip SAM4E, SAM4N, SAM4S

• Microchip SAMD5x, SAME5x,

• Microchip SAMG51, SAMG53, SAMG54, SAMG55

• STMicro STM32F4 series.

Cortex-M7
• SAME70, SAMS70, SAMV70, SAMV71

• STMicro STM32F7 series.

Page 6

Cortex-M23
• Microchip SAML11 (still experimental)

Cortex-M33
• NXP LPC55S69

Support for ARM Cortex-M micro-controllers from other manufacturers will be added in
future firmware updates. 

Page 7

3

GDB Server Support
Maven’s primary purpose is to act as a GDB server on behalf of the target micro-
controller. In this role, the Gnu Debugger (GDB), or IDE supporting the GDB remote
protocol, running on a host computer can control and inspect the state of the target’s CPU
core and its connected peripherals using the GDB ‘remote’ target protocol. Maven
translates instructions received from the debugger into the appropriate register and
memory read/write requests over the ARM CPU’s ADIv5 interface known as the Serial
Wire Debug Port (SWD-DP).

Maven supports breakpoints both in RAM and in Flash memory. The latter utilising
Cortex-M hardware breakpoints where available - most Cortex-M cores have around 6
hardware breakpoints. Maven supports up to 64 software breakpoints for code running in
RAM. In most cases GDB will choose the appropriate type of breakpoint automatically,
since Maven informs GDB of the address/size/type of memory regions for supported
targets.

Hardware watchpoints are also supported, where available on the target Cortex-M core.
These can be used to halt execution when firmware accesses specific memory addresses,
and are an invaluable tool to help track down memory corruption and/or use-after-free
type bugs.

Maven can also auto-detect if you are debugging a firmware image containing a real-time
operating system such as FreeRTOS or NuttX. Maven will use GDB’s thread awareness
feature to make it possible to view detailed task information such as name, state, priority,
and full back-trace for all extant tasks.

For more information on debugging embedded platforms with GDB, see:

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Debugging.html

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Debugging.html

Page 8

7

Connecting to Maven over
USB
Maven has a simple command-line interface from which you can monitor and configure
various aspects of Maven’s behaviour. The command-line interface is available from
within GDB using the “monitor” command. Anything prefixed with “monitor” is passed to
Maven and executed. Command output is passed back to GDB and displayed like any
other GDB command.

Page 9

Using Maven with GDB
Maven was designed from the outset to work with the open-source Gnu Debugger, GDB.
Other debuggers which support the GDB remote protocol can also be used. If you already
use ARM GDB with a different programmer then a simple change to your .gdbinit file is all
that is needed to get up and running with Maven. The minimum recommended version of
GDB is 8.0.50. Earlier versions will probably work, but have not been extensively tested
with Maven.

To configure GDB for Maven, you first need to determine how the USB CDC ports are
instantiated on your host computer. On Linux and MacOS host, this will be two entries
under /dev on the root filesystem. In Windows, this will be as to COM ports. For example,
on MacOS the following two device files are automatically created:

/dev/cu.usbmodemMCL1ZZ124C3E1
/dev/cu.usbmodemMCL1ZZ124C3E3

Maven’s GDB server is accessed via the first file, while SWO/target UART are accessed via
the second. The /dev/cu.usbmodem prefix will be constant. The suffix will vary depending
on the serial number of your Maven device.

Add the following line to your .gdbinit file to configure GDB to connect to Maven’s GDB
server:

target extended-remote /dev/cu.usbmodemMCL1ZZ124C3E1

Now whenever you start a GDB session it will automatically connect to Maven and
communicate with the target.

You can also use GDB to program Flash memory on the target device; either as a
standalone programmer or as part of your interactive debugging session.

For standalone programming, create a simple shell script:

#!/bin/sh
target= /dev/cu.usbmodemMCL1ZZ124C3E1
bin="${1}"
if ["$2" != ""]; then
 target="$2"
fi
arm-none-eabi-gdb -nx --batch -ex "target extended-remote
${target}" -ex "load ${bin}" -ex 'kill' -ex quit

Place the script somewhere in your search PATH. Invoke the script with the first
parameter set to the firmware image filename. The script has an optional 2nd parameter -
the USB CDC device associated with Maven. Without the 2nd parameter, the default
target specified in the script is used.

Page 10

To program Flash from within GDB as part of your debugging procedure, start GDB as
normal with the firmware image executable supplied on the command line. At GDB’s
prompt, issue the load command before any other debug commands. Your firmware
image will now be in Flash and the program counter will point to the reset vector.

Maven supports GDB’s monitor command. All command line text following the
monitor keyword is passed to Maven for interpretation by Maven’s shell. Output from
shell commands is passed back to GDB for display on its console.

See https://sourceware.org/gdb/onlinedocs/gdb/ for more information. 

https://sourceware.org/gdb/onlinedocs/gdb/

Page 11

Connecting to the Target UART
A very useful feature of Maven is the ability to send and receive RS232 serial data to and
from your target device using your favourite terminal server program, such as TerraTerm.

Simply connect the Maven board’s TxD/RxD/Gnd pins to the RxD/TxD/Gnd pins of your
target. Note that Maven's UART operates at your target’s logic voltage levels rather than
true RS232 levels as you'd find on a real RS232 serial port. Connecting Maven to a real
RS232 serial port risks damaging some components on Maven if the real serial port is able
to drive a large current through Maven’s over-voltage protection devices.

By default Maven uses a serial port speed of 115200 baud, 8 data bits, no parity and one
stop bit. The speed, parity and stop bit settings can be changed via Maven's command line
or by your terminal server program.

Page 12

8

Configuring Maven
The Built-in Command Line
Maven has a simple command-line interface available via the GDB monitor command.

The available commands are:

adapter View/Modify debug port parameters

gdb_attach Configures GDB attach behaviour

help Display this help

reboot Reboot Maven

rescan Initiates/configures target rescan

rstcfg Configure sRST behaviour

rtos Configure and show RTOS parameters

serial Show serial number of your Maven device

tc Configure target communications

uart Display UART configuration

The default settings for most of the above commands will be fine. The most common
changes you are likely to make will be target UART baud rate using the ‘tc’ command, and
ADIv5 clock speed using the ‘adapter’ command.

When a valid target is connected, some additional commands are available:

cortexm Configure Cortex-M behaviour

gpnvm Clear/Set/Show GPNVM bits (Some SAM targets only)

info Display target details

protect Display/manipulate target protection (Not all targets)

reset Performs a hard reset of the target

Note that the gpnvm command is available only for targets which support GPNVM bits,
such as the Microchip SAM4S series. The protect command applies only to targets
which have a configurable security level, such as STMicro STM32Fx series.

Page 13

Command: adapter
adapter

Show current adapter configuration

adaptor speed <value>

Sets the SWCLK frequency for communicating with the target. The
available frequencies range between about 300 KHz and 13 MHz,
depending on the hardware Maven is running on. The default is around 2
MHz.

adaptor idlecycles <value>

Specifies the number of idle cycles inserted after completing an SWD
transaction. Legal values are 0 to 255. The default is eight.

adaptor turnaround <cycles>

Specifies the number of clock cycles for the turnaround period when
changing the SWDIO pin between input and output. Note that not all
targets support changing this value. The status output of this command will
display a warning if the current target did not honour the requested
turnaround period. Legal values are 1 to 4. The default is one.

Changes to the above settings are persistent across reboots but will not affect the current
connection with an existing target. Power-cycling or disconnecting/reconnecting the
target will cause the changes to take effect.

Command: gdb_attach
gdb_attach

Show current GDB attach behaviour.

gdb_attach reset

When GDB attaches, reset the target and halt it on the reset vector. This is
useful in conjunction with GDB's "load" command to download and run/
debug a new firmware image.

gdb_attach halt

When GDB attaches, forcibly halt the target without performing a reset.
This is useful when using GDB to "break" into a running program to
determine its current state.

Page 14

gdb_attach auto

When GDB connects to Maven, a connection to the target will take place
automatically, without the need for “attach 1” at the GDB command
prompt. This is the default setting for single-core targets. For dual-core
targets, you must always issue a GDB attach command, specifying the
desired core.

gdb_attach manual

When GDB connects to Maven, you will need to issue a GDB “attach N”
command at the GDB prompt, where “N” is the CPU core number plus 1.

The setting is persistent; it will be preserved across Maven reboots.

Command: help
help

Show list of available commands.

Command: reboot
reboot

Immediately reboots Maven.

reboot defaults yesplease

Reboots Maven after erasing all stored settings. When the firmware
restarts, all settings will be restored to factory default values.

Command: rstcfg
rstcfg

Show current reset behaviour.

rstcfg driver <option>

Possible values for 'option' are:

• opendrain sRST driver is open-drain (default).

• pushpull sRST driver is push-pull.

Page 15

Command: rtos
rtos

Show current RTOS configuration. If invoked from within GDB (using
GDB’s “mon” command), this will also display details of any RTOS
detected.

rtos support <auto|off|name>

Configures RTOS detection:

• auto Target will be probed for all supported RTOSes (default).

• off RTOS support is disabled.

• name Only the named RTOS will be probed.

rtos params [-s] [-r <name>] [new-params]

Shows parameters for the RTOS specified by “-r <name>”, or the current
RTOS is invoked from within GDB. If the target’s RTOS requires slightly
different parameters, to handle structure padding, for example, then these
can be specified with [new-params]. This is a comma-separated list of
integers pairs in the form I:V, where 'I' specifies the parameter index, and
'V' is the parameter value. Valid indices per RTOS are shown by 'rtos
params -r <name>’.

If '-s' is specified, the new params are saved to non-volatile storage so need
only be specified once. Otherwise, they will affect the current GDB session
only.

The default RTOS parameters can be restored by specifying 'default' in
place of <new-params>.

rtos init-syms <on|off>

If an RTOS is detected, this flag indicates whether or not the memory
locations referenced by volatile RTOS symbols should be initialised to zero
when 'gdb_attach' mode is configured for ‘reset'. The default is 'on', and
will ensure stale/invalid thread state is not used when a GDB session first
starts.

Page 16

Command: serial
serial

This will display the device's unique serial number.

Command: tc
tc

This will display the target comms settings for each service (GDB, SWO,
UART).

tc <service> usb <usb-port>

Assign the numbered USB CDC port instance <usb-port> to the specified
service. Valid values are 0 - 1 inclusive, or '-' to deassign USB. It is possible
to share certain services on a single USB instance. Upon connection, you
will be asked which service you wish to connect to. Note that the GDB
server service cannot be shared in this way. Changes to this setting require
a reboot to take effect.

tc <service> mode <mode-string>

Configure the specified service's data mode. Supported modes are:

"crlf" Convert an LF character into a CRLF pair.

"raw" Disable CRLF translation. Data is passed as-is to the host.

Mode strings can be prefixed with an optional "+" or "-" character to imply
addition or removal of the mode from the service. Note that services
sharing a USB port will use the lowest common mode. So if one of the
services is in "raw" mode, all shared services on the same port will be in
"raw" mode. Changes to these settings will not affect an established
connection.

tc <service> fmt <uart-character-format>

For services provided by a UART, this command configures the UART
character format (number of data bits, parity, and stop bits). For example,
"8N1" specifies 8 bits, no parity, 1 stop bit. "5E2" is 5 bits, even parity and 2
stop bits. Note that the character format for the "swo" service is fixed at
"8N1" as per the standard.

tc <service> baud <uart-baudrate>

Page 17

Configure UART baud rate. Valid rates are > 0 and <= a probe-specific
maximum value (usually around 2500000). If Maven cannot get to within
+/- 1.5% of the required rate then an error will be displayed. Rates above 2
Mbaud are at higher risk of receiver overrun errors. See the "uart"
command for the actual baud rate used, together with other useful
statistics.

Command: uart
uart

Display configuration and statistics for Maven’s UART devices.

Command: cortexm
cortexm

Display current configuration of features specific to the target’s Cortex-M
CPU core.

cortexm maskisr <on | off>

Configures interrupt masking behaviour during single-step. Default is on.

cortexm vector_catch <vector> [...]

Configures which error vectors to hook when target is running. Options for
<vector> are:

 harderr Debug trap on HardFault exception

 interr Debug trap on fault during exception entry/exit

 buserr Debug trap on BusFault exception

 staterr Debug trap on UsageFault exception (state error)

 chkerr Debug trap on UsageFault exception (check error)

 nocperr Debug trap on UsageFault exception (copro error)

 mmerr Debug trap on MemManage exception

 all Enable all of the above

 none Disable all of the above

Page 18

The default is 'harderr'. You can specify multiple vectors, each separated by
a space. Note that ARMv6-M devices (Cortex-M0, for example) only
support debug trap on 'harderr'; all other trap types are ignored.

If execution branches to a hooked vector, Maven will halt the CPU core and
report the status to GDB.

Command: gpnvm
gpnvm

Available when supported by the target, this command shows the current
status of GPNVM bits. For example, the output for a SAM4S4A SoC (as
used by Maven itself):

GPNVM0: 0 (Security Bit: Disabled)

GPNVM1: 1 (Boot Mode: Flash)

The first field shows the GPNVM bit name. The second field shows the
current value for the bit. The third field describes the function of the bit,
where appropriate.

gpnvm [set | clear] <bit-number>

Set or clear the specified GPNVM bit number. The bit number is usually 0
or 1 but can be 2 in devices with larger Flash memory. The current status
will indicate how may bits are implemented.

Command: info
info

Displays some useful information about the target SoC. For example, the
information shown for the SAM4S4A SoC on Maven is:

Vendor: Microchip
Device: ATSAM4S4A
Additional Info: CHIP ID 288B09E0
CPU Core: Cortex-M4 (r0p1), ARMv7-M Mainline implementation
MPU: present
FPU: not present
Cache: not present
Hardware breakpoints: 6
Hardware watchpoints: 4
Memories:
 Flash: 00400000-0043ffff (256 KB
 ROM: 00800000-00807fff (32 KB, SAM-BA ROM)
 RAM: 20000000-2000ffff (64 KB)
Power Supply Voltages:

Page 19

Maven: 3.3 volts
Target: 3.30 volts

Command: protect
protect [level [permanent]]

Available when supported by the target, with no parameters, this command
displays the target's current protection level along with a description of the
possible target-specific values for ‘level'. If specified, 'level' is used to
change the current protection level of the target. Note that this command
can only increase the protection level. Use the 'unlock' command to remove
protection, if possible. Specify '1' or 'set' to enable protection. Other non-
zero values for 'level' are interpreted in a target-specific way, as described
when the current protection level is displayed.

Note that changing the protection level may require the target to be power-
cycled for the change to be effective. If 'level' is followed by the word
"permanent" then, for some targets, the combination may render the target
irreversibly locked, so be sure to understand the consequences of your
actions!

Valid range for level is 0-2

Command: unlock
unlock

Available when a locked target is connected, this command will perform
the necessary steps to unlock a device which has been protected from
debugger access. In effect, it undos the results of the protect command.
In most cases, this will cause the device’s Flash and volatile memories to be
completely erased, and is usually followed up with a device reset. However,
if the device has been locked permanently (if supported by the device) then
this command will have no effect.

Page 20

RTOS Support
Maven currently supports task-awareness for the following RTOSes:

• FreeRTOS

• NuttX

For FreeRTOS, the default parameters (see command: rtos params) will be adequate for
almost all FreeRTOS ports to Cortex-M devices. It’s unlikely you will need to adjust them,
so thread-awareness for your FreeRTOS images should work right out the box.

NuttX support is a little more complicated due to its plethora of build-time CONFIG_*
options. These make it very difficult to locate the key members of the “struct tcb_s” data
structure assigned to each task. To overcome this problem, you must apply the following
patch to the NuttX source tree:

diff --git a/include/debug.h b/include/debug.h
index f75a1fab84..fa69b2049d 100644
--- a/include/debug.h
+++ b/include/debug.h
@@ -1067,6 +1067,52 @@ void _info(const char *format, ...);
 #endif
 #endif /* CONFIG_CPP_HAVE_VARARGS */

+#ifndef CONFIG_DEBUG_DISABLE_DEBUGGER_HINTS
+/* This structure is used by thread-aware debuggers in order to locate key
+ * task state within a NuttX firmware image. Additions to this structure
+ * will need corresponding changes to the initializer in nx_start.c.
+ *
+ * =============================== NOTE ===============================
+ * New hints must be APPENDED to this structure only. Existing hints
+ * must not be removed.
+ *
+ * The debugger will assume elements are naturally aligned, regardless
+ * of the native alignment constraints of the target device. Be careful.
+ * =============================== NOTE ===============================
+ */
+struct nuttx_debugger_hints_s {
+ uint32_t magic;
+
+ /* sizeof(FAR void *) */
+ uint16_t sizeof_far_pointer;
+
+ /* offsetof(struct tcb_s, pid) */
+ uint16_t offsetof_tcb_pid;
+
+ /* offsetof(struct tcb_s, sched_priority) */
+ uint16_t offsetof_tcb_sched_priority;
+
+ /* offsetof(struct tcb_s, xcp) */
+ uint16_t offsetof_tcb_xcp;
+
+ /* offsetof(struct tcb_s, name) */

Page 21

+ uint16_t offsetof_tcb_name; /* '0' if CONFIG_TASK_NAME_SIZE == 0 */
+
+ /* offsetof(struct xcptcontext, regs) */
+ uint16_t offsetof_xcptcontext_regs;
+
+ /* sizeof(struct xcptcontext) */
+ uint16_t sizeof_xcptcontext_regs;
+
+ /* CONFIG_MAX_TASKS */
+ uint16_t config_max_tasks;
+
+ /* New hints go here. */
+};
+#define NUTTX_DEBUGGER_HINTS_MAGIC \
+ (0xDEBF0000u + sizeof(struct nuttx_debugger_hints_s))
+#endif /* CONFIG_DEBUG_DISABLE_DEBUGGER_HINTS */
+
 #if defined(__cplusplus)
 }
 #endif
diff --git a/sched/init/nx_start.c b/sched/init/nx_start.c
index 771522069d..483ba34d3a 100644
--- a/sched/init/nx_start.c
+++ b/sched/init/nx_start.c
@@ -330,6 +330,24 @@ static FAR char *g_idleargv[CONFIG_SMP_NCPUS][2];
 static FAR char *g_idleargv[1][2];
 #endif

+#ifndef CONFIG_DEBUG_DISABLE_DEBUGGER_HINTS
+const struct nuttx_debugger_hints_s g_nuttx_debugger_hints = {
+ .magic = NUTTX_DEBUGGER_HINTS_MAGIC,
+ .sizeof_far_pointer = sizeof(FAR void *),
+ .offsetof_tcb_pid = offsetof(struct tcb_s, pid),
+ .offsetof_tcb_sched_priority = offsetof(struct tcb_s, sched_priority),
+ .offsetof_tcb_xcp = offsetof(struct tcb_s, xcp),
+#if (CONFIG_TASK_NAME_SIZE > 0)
+ .offsetof_tcb_name = offsetof(struct tcb_s, name),
+#else
+ .offsetof_tcb_name = 0,
+#endif
+ .offsetof_xcptcontext_regs = offsetof(struct xcptcontext, regs),
+ .sizeof_xcptcontext_regs = sizeof(((struct xcptcontext *)0)->regs),
+ .config_max_tasks = CONFIG_MAX_TASKS,
+};
+#endif /* CONFIG_DEBUG_DISABLE_DEBUGGER_HINTS */
+
 /**
 * Public Functions
 **/
@@ -355,6 +373,13 @@ void nx_start(void)
 int cpu = 0;
 int i;

+#ifndef CONFIG_DEBUG_DISABLE_DEBUGGER_HINTS
+ /* Reference nuttx_debugger_hints_s to ensure it is not removed from the
+ * image.
+ */
+ (void) g_nuttx_debugger_hints;
+#endif

Page 22

+
 sinfo("Entry\n");

 /* Boot up is complete */

The patch adds a short 20-byte data structure to the firmware image. The structure
contains the offsets to all the relevant fields of “struct tcb_s” necessary for Maven to
support NuttX tasks under GDB. 

Page 23

7

Acknowledgements
Maven firmware contains open-source software from several third parties. Their license
details are included below.

GPIO Hardware Abstraction
Specifically hal_gpio.h by Alex Taradov (https://github.com/ataradov/mcu-starter-
projects)

Copyright (c) 2014-2016, Alex Taradov <alex@taradov.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
POSSIBILITY OF SUCH DAMAGE.

https://github.com/ataradov/mcu-starter-projects
https://github.com/ataradov/mcu-starter-projects

Page 24

ARM Cortex-M4 CMSIS Headers
Copyright (c) 2009 - 2019 Arm Limited. All rights reserved.

Apache-2.0 License.

FreeRTOS
wAVR Firmware uses a wholly unmodified version of FreeRTOS-10 which is licensed
under the terms of the MIT Open Source License, below:

Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software. If you wish to use our Amazon
FreeRTOS name, please do so in a fair use way that does not cause confusion.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

	Introduction
	Features

	Supported ARM Micro-Controllers
	GDB Server Support
	Connecting to Maven over USB
	Using Maven with GDB
	Connecting to the Target UART
	Configuring Maven
	The Built-in Command Line
	Command: adapter
	Command: gdb_attach
	Command: help
	Command: reboot
	Command: rstcfg
	Command: rtos
	Command: serial
	Command: tc
	Command: uart
	Command: cortexm
	Command: gpnvm
	Command: info
	Command: protect
	Command: unlock
	RTOS Support
	Acknowledgements
	GPIO Hardware Abstraction
	ARM Cortex-M4 CMSIS Headers
	FreeRTOS

